invariant imbedding

invariant imbedding
инвариантная вставка (дополнительного слоя в полубесконечное пространство рассеивателя)

Англо-русский словарь промышленной и научной лексики. 2014.

Игры ⚽ Нужен реферат?

Смотреть что такое "invariant imbedding" в других словарях:

  • Viktor Amazaspovich Ambartsumian — Infobox Scientist name = PAGENAME Վիկտոր Համբարձումյան box width = image width =150px caption = PAGENAME birth date = birth date|1908|09|18 birth place = Tbilisi death date = death date and age|1996|08|12|1908|09|18 death place = Byurakan… …   Wikipedia

  • Richard Bellman — (* 29. August 1920 in Brooklyn, New York; † 19. März 1984 in Los Angeles, Kalifornien) war ein US amerikanischer Mathematiker. Inhaltsverzeichnis 1 Leben 2 Schriften 3 …   Deutsch Wikipedia

  • LNEMS52 — R.E. Bellman/E.D. Denman (Eds.): Invariant Imbedding. Proceedings 1970, Springer Verlag 1971, ursprünglich Lecture Notes in Operations Research and Mathematical Systems …   Acronyms

  • LNEMS52 — R.E. Bellman/E.D. Denman (Eds.): Invariant Imbedding. Proceedings 1970, Springer Verlag 1971, ursprünglich Lecture Notes in Operations Research and Mathematical Systems …   Acronyms von A bis Z

  • Systolic geometry — In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner, and developed by Mikhail Gromov and others, in its arithmetic, ergodic, and topological manifestations.… …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • Géométrie différentielle des surfaces — En mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies… …   Wikipédia en Français

  • Filling radius — In Riemannian geometry, the filling radius of a Riemannian manifold X is a metric invariant of X . It was originally introduced in 1983 by Mikhail Gromov, who used it to prove his systolic inequality for essential manifolds, vastly generalizing… …   Wikipedia

  • Stone–von Neumann theorem — In mathematics and in theoretical physics, the Stone–von Neumann theorem is any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. The name is for Marshall… …   Wikipedia

  • Pu's inequality — [ Roman Surface representing RP2 in R3] In differential geometry, Pu s inequality is an inequality proved by P. M. Pu for the systole of an arbitrary Riemannian metric on the real projective plane RP2.tatementA student of Charles Loewner s, P.M.… …   Wikipedia

  • Embedding — In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.When some object X is said to be embedded in another object Y , the embedding is… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»